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Additional Operational Properties of Laplace Transform
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The preceding two cases suggest the general result for £{1"f(r)}.

 THEO REM 4.8 Derivatives of Transforms
| IEF() = Z{f®) andn=1 2,3, . . then

L)) = 17 L Fs).
ds"




Example T Using Theorem 4.8
Evaluate #{¢ sin kt}.

SOLUTION With f(r) = sin kt, F(s) = k/(s* + k*), and n = 1, Theorem 4.8 gives

Lt sin kr}————c%’{smkr} e ( L )z 2 :
ds Cds \ S+ (s*+ k)2

Example 2 An Initial-Value Problem
Solve x” + 16x = cos 4t, 0) =10, xH(0)=1,

of 1 foot per second in the downward direction from the equlhbnum position.
Transforming the differential equation gives %
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Now we have just learned in Example 1 that
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and so with the identification k = 4 in (1) and in part (d) of Theorem 4.3, we
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Convolution of Laplace Transform

_ THEOREM 4.9 Convolution Theorem

If f(r) and g(7) are piecewise continuous on [0, =) and of exponential order,
then

FUf =g} = LD} L g@) = F(5)G(s).

F(s) = L1/} = f (D) dr
and Gls) = Ligt)} = f By dp -

Proceeding formally, we-have

FG) ) = ( fn ) dr)( jo " o) a’ﬁ)
- f B (Dg(B) drdp

= f " fm) dr f " Be(B) dp,
Holding 7 fixed, we let t = 7+ f3, dt = dJ3, so that
F(s)G(s) = fu ") de f Tea(t— 1) dr
In the 77-plane we are integrating over the shaded region in Figure 4.32. Since f

. and g are piecewise continuous on [0, e) and of exponential order, it is possible
' to interchange the order of integration:

F6)G(s)= | et [ g -1 dr= | me-“{ [ rst- dr} di=Z(fxg}. O




Example 3 Transform of a Convolution

Evaluate D%?Uef sin(t — 1) dTJ.
0
SOLUTION With f(7) = €' and g(#) = sin ¢ the convolution theorem states that

the Laplace transform of the convolution of f'and g is the product of their Laplace
transforms:
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Example 4 Inverse Transform as a Convolution -

Evaluate ..EEH{ - }

(5 + IP)
SOLUTION Let F(s)=G(s) = 21
s% + kP
so that f(t)—g(.r)—i&’"{s.szz}zésinkt. -

In this case (4) gives

3_1{_17ﬁ} e Isin k7 sin k(t — 7) d.
(5% + k5)* K2 o
Now recall from trigonometry that
cos(A +B)=cos A cos B—sinA sin B
and cos(A —?"’B) =cos A cos B + sin A sin B.

Subtracting the first from the second gives the identity
sin A sin B = %[COS(A — B) —cos(A + B)].
If we set A =ktand B = k(t — 1), we can carr? out the integration in (6):
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= 17 [i sin k(27— 1) — Tcos kt
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_ sin kt — kt cos kt
2K '

Multiplying both sides by 2k gives the inverse form of (5). i




B Transform of an Integral When g(¥) =1 and & {g(} = G(s) = 1/s, the
convolution theorem implies that the Laplace transform of the integral of fis

j][ [ dr} = @)
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The inverse form of (7),

L fo) dr= % l{ A i‘?} } (8)

can be used in lieu of partial fractions when s" is a factor of the denominator and f(r) =
SFHF(s)} is easy to integrate. For example, we know for f(#) = sin ¢ that F(s) =
1/(s* + 1), and so by (8)
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Example 7 Transform of a Periodic Function
Find the Laplace transform of the periodic function shown in Figure 4.35.

SOLUTION The function E(7) is called a square wave and has period 7= 2. On
the interval 0 < ¢ < 2, E(¥) can be defined by

a0 = =]
E@Z{o, <2,

and outside the interval by f(z + 2) = f(r). Now from Theorem 4.10,

1 2 ; 1 ! 2 )
HED)} = —— J e E®r) dt = : [ J e - 1dt+ J e Q dr]
1—e= % IF=—eiz> |1 i
1 b= :
= — l—-e"=(l+e"(l —e)
l—e™ & -
1 ~
e (11) Q4




